

Контроллер BioSmart 4-0

Руководство по эксплуатации

Оглавление

1.		введени	E4
2.		МЕРЫ ПРІ	ЕДОСТОРОЖНОСТИ4
3.		ОПИСАНИ	ІЕ И РАБОТА КОНТРОЛЛЕРА5
4.		подключ	ЧЕНИЕ ДОПОЛНИТЕЛЬНОГО ОБОРУДОВАНИЯ9
	4.1	. Подклю	учение к ПК9
	4.2	. Подклю	учение БУР
	4.3	. Подклю	очение к Wiegand интерфейсам контроллера10
	4.4	. Подклю	очение электромеханического или электромагнитного замка10
	4.5	. Подклю	очение кнопок/датчиков11
	4.6	. Подклю	очение турникетов и других исполнительных устройств11
5.		ОРГАНИЗ/	АЦИЯ СВЯЗИ С КОНТРОЛЛЕРОМ В ПО BIOSMART-STUDIO V511
6.		конфигу	РАЦИЯ КОНТРОЛЛЕРА В ПО BIOSMART-STUDIO V515
	6.1	. Вкладка	а «Общие»15
		6.1.1.	Раздел «Контроллер»16
		6.1.2.	Раздел «Подключение»16
		6.1.3.	Раздел «Режим работы»16
		6.1.4.	Раздел «Дополнительно»17
	6.2	. Вкладка	а «Системные»
		6.2.1.	Раздел «Общие»17
		6.2.2.	Раздел «Доп. устройства»19
		6.2.3.	Раздел «Реле»
		6.2.4.	Параметры управления доступом21
	6.3	. Вкладка	а «Настройки IO»23
	6.4	. Вкладка	а «Диагностика»
		6.4.1.	Раздел «Статистика ошибок»27
	6.5	. Вкладка	а «Видеокамеры»
	6.6	. Организ	АЦИЯ ДОСТУПА НА КОНТРОЛЛЕР
7.		ПРАВИЛА	СКАНИРОВАНИЯ ОТПЕЧАТКОВ ПАЛЬЦЕВ НА КОНТРОЛЛЕРЕ

8.	ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ	. 30
9.	ХРАНЕНИЕ	. 31
10.	ТРАНСПОРТИРОВАНИЕ	. 31
11.	ГАРАНТИИ ИЗГОТОВИТЕЛЯ	. 31
12.	утилизация	. 32

Уважаемые покупатели!

Благодарим Вас за приобретение нашей продукции. При соблюдении правил монтажа и эксплуатации данное устройство прослужит долгие годы.

1. Введение

Настоящий документ описывает работу контроллера BioSmart 4-O.

Руководство по монтажу контроллера BioSmart -4-О и программное обеспечение можно скачать на официальном сайте производителя (<u>www.bio-smart.ru</u>) в разделе «Поддержка».

Используемые сокращения:

БУР – блок управления реле BioSmart;

СКУД - система контроля и управления доступом;

ПО – программное обеспечение;

ПК – персональный компьютер;

БП – блок питания.

. так выделена важная информация, на которую следует обратить внимание

2. Меры предосторожности

- Используйте контроллер только по назначению, как указано в руководстве по эксплуатации;
- Установка и обслуживание контроллера должны осуществляться только квалифицированным и обученным персоналом;
- Не используйте для очистки или обеззараживания средства за исключением тех, что рекомендуются производителем;
- Контроллер должен располагаться на ровной поверхности и быть сохранен от ударов;
- Подсоединяйте контроллер только к источнику питания с напряжением, соответствующим напряжению, указанному на маркировке;

- Источник питания должен соответствовать классу II по электробезопасности;
- Регулярно проверяйте оболочку соединительных кабелей. В случае повреждения оболочки немедленно замените кабель.

3. Описание и работа контроллера

Контроллер **BioSmart 4-O** предназначен для работы в составе системы контроля и управления доступом **BioSmart**. Контроллер позволяет организовать учет рабочего времени посредством идентификации пользователей по отпечаткам пальцев и бесконтактным RFID картам, а также осуществлять контроль и управление доступом, управлять запорными устройствами (электромеханическими и электромагнитными замками и защелками, турникетом, шлагбаумом).

Контроллер выпускается в модификациях **BioSmart 4-O-EM-N-L**, **BioSmart 4-O-MF-N-L**, **BioSmart 4-O-HD-N-L**, в зависимости от применяемого типа считывателя карт (см. таблицу 1).

Контроллер может применяться как для осуществления локального, так и централизованного контроля доступа.

Локальный контроль доступа – предоставление или запрет доступа по идентификатору, внесенному в базу данных контроллера, в зависимости от прав доступа данного идентификатора, текущего режима доступа у предъявленного идентификатора.

Централизованный контроль доступа – считывание кода предъявленного идентификатора, и передача его на сервер идентификации **BioSmart** с последующим предоставлением либо запретом доступа по данному идентификатору командой с сервера идентификации **BioSmart**.

Контроллер рассчитан на круглосуточный режим работы.

Внешний вид контроллера представлен на рисунке 1.

Рисунок 1. Внешний вид контроллера Biosmart 4-О.

- 1 Светодиодный индикатор;
- 2 Оптический сканер отпечатков пальцев;
- 3 Поле для считывания информации с RFID-карты.

Технические характеристики контроллера приведены в таблице 1.

Таблица 1

Характеристика	Значение
Тип считывателя отпечатков пальцев	Оптический
Максимальное количество отпечатков пальцев в режиме	4 500
локального контроля доступа	
Максимальное количество пользователей*	3 000
Максимальное количество кодов карт*	3 000
Максимальное количество событий в памяти контролле- ра	40 000
Количество временных групп	50
Время идентификации 1:1000 в локальном режиме, с	не более 1
Вероятность ошибочного до- ступа (FAR)**	10 ⁻⁴ - 10 ⁻⁸
Вероятность ошибочного от- каза в доступе (FRR) при FAR 10 ⁻⁵ , %**	1
Встроенный считыватель RFID карт	Да
Типы считываемых карт	EM-Marine (BioSmart 4-O-EM-N-L);
	MIFARE Classic, MIFARE DESFire EV1 (BioSmart 4-O-MF-N-L);
	HID iCLASS SE (BioSmart 4-O-HD-N-L).

Дальность считывания карт,	до 100
мм	
Поддержка БУР BioSmart	Да
Интерфейс связи с управляю-	Ethernet (IEEE 802.3, 10BASE-T, IEEE
щим компьютером	802.3u, 100BASE-TX), RS485
Выходной интерфейс Wiegand	Да
26-40 бит	
Входной интерфейс Wiegand	Да
26-40 бит	
Бортовое реле	12 VDC, 1 A
Количество дискретных вхо-	1
дов, шт	
Параметры электропитания	12 VDC ±15%, 0,4 A
Габаритные размеры (L x W x	175x76x54
Н), мм	
Материал корпуса	пластик
Масса нетто, г	310
Масса брутто, г	470
Температурный диапазон	от 0 до + 50
эксплуатации, °С	
Относительная влажность	не более 90
воздуха эксплуатации, %	
Примечания: * - Каждому пользовате ** - Расчетное значение	лю может быть назначен код карты. . Зависит от качества биометрических данных поль-

зователей.

Конструкция контроллера не предусматривает его использование в условиях воздействия агрессивных сред, пыли, а также во взрывопожароопасных помещениях.

Контроллер должен быть защищен от прямого попадания влаги.

Светодиодный индикатор отображает текущее состояние работы контроллера. По умолчанию установлены следующие режимы индикации:

_	Мигающий синий - режим ожидания отпечатка паль- ца/карты;
_	Красный - идентификация неудачна;
_	Зеленый - идентификация успешна;
_	Мигающий зелёный – режим отладки.

Контроллер, подключенный к источнику питания, переходит в режим ожидания отпечатка пальца/карты.

Успешная либо неудачная идентификации пользователя по отпечатку пальца/карте сопровождается соответствующим сигналом светодиодного индикатора и звуковым сигналом.

ПО BioSmart Studio v5 позволяет сконфигурировать режим работы бортового реле, БУР, светодиодного и звукового индикаторов.

4. Подключение дополнительного оборудования

4.1. Подключение к ПК

Контроллер может подключаться к ПК посредством интерфейса Ethernet. Подключение осуществляется путем объединения контроллера (контроллеров) и ПК посредством сетевого коммутатора в единую сеть, в которой каждому устройству присвоен уникальный IP-адрес. Подробная информация о подключении и используемых типах кабелей приведена в **Руководстве по монтажу контроллера BioSmart 4-O.** Документацию можно скачать на официальном сайте производителя (<u>www.bio-smart.ru</u>) в разделе «Поддержка»

4.2. Подключение БУР

БУР предназначен для дистанционного включения исполнительных устройств (электромагнитные замки, турникеты и т.д.) и приема данных с внеш-

них датчиков (геркон, датчик прохода турникета, сигнальная кнопка и т.д.). Подключение БУР к контроллеру осуществляется посредством интерфейса RS 485. БУР является инициатором передачи запросов к контроллеру. Количество адресуемых контроллеров не превышает 4. Адреса устройств в сети RS 485 БУР настраиваются при помощи движковых переключателей на БУР и на подключаемых к нему контроллерах

Подробная информация о подключении БУР приведена в Руководстве по монтажу контроллера BioSmart 4-O и в Руководстве по эксплуатации БУР BioSmart. Документацию можно скачать на официальном сайте производителя (www.bio-smart.ru) в разделе «Поддержка»

4.3. Подключение к Wiegand интерфейсам контроллера

Наличие входного интерфейса Wiegand обеспечивает совместимость контроллера с большинством proximity-считывателей и кодонаборных панелей сторонних производителей.

При подключении сторонних устройств по Wiegand необходимо руководствоваться эксплуатационными документами, описывающими порядок подключения и настройки этих устройств.

Подробная информация о подключении считывателей и кодонаборных панелей приведена в **Руководстве по монтажу контроллера BioSmart 4-O.** Документацию можно скачать на официальном сайте производителя (<u>www.bio-</u> <u>smart.ru</u>) в разделе «Поддержка».

Выходной интерфейс Wiegand позволяет интегрировать контроллер в любую СКУД, использующую считыватели с Wiegand выходом. В случае успешной идентификации, контроллер передает ID сотрудника или номер карты, присвоенной ему в ПО BioSmart Studio v5 на контроллер сторонней СКУД. В свою очередь, контроллер сторонней СКУД принимает решение о допуске и подаёт сигнал на исполнительное устройство.

4.4. Подключение электромеханического или электромагнитного замка

Подключение электромеханического замка к контроллеру может произво-

диться с использованием бортового реле контроллера или посредством БУР, подключение электромагнитного замка – только посредством БУР. Подробная информация о подключении замков приведена в Руководстве по монтажу контроллера BioSmart 4-O и в Руководстве по эксплуатации БУР BioSmart. Документацию можно скачать на официальном сайте производителя (www.bio-smart.ru) в разделе «Поддержка».

4.5. Подключение кнопок/датчиков

Подключение датчика прохода/кнопки выхода из помещения производится к бортовому дискретному входу контроллера или к дискретному входу БУР.

Подключение датчика пожарной тревоги производится аналогично подключению кнопки/датчика прохода.

Схемы подключения, рекомендуемые типы кабелей и другая необходимая информация приведены в Руководстве по монтажу контроллера BioSmart 4-О и Руководстве по эксплуатации БУР BioSmart. Документацию можно скачать на официальном сайте производителя (www.bio-smart.ru) в разделе «Поддержка».

4.6. Подключение турникетов и других исполнительных устройств

Подключение турникетов и других исполнительных устройств производится согласно требованиям соответствующих руководящих документов.

Схемы подключения, рекомендуемые типы кабелей и другая необходимая информация приведены в Руководстве по монтажу контроллера BioSmart 4-О и Руководстве по эксплуатации БУР BioSmart. Документацию можно скачать на официальном сайте производителя (<u>www.bio-smart.ru</u>) в разделе «Поддержка».

5. Организация связи с контроллером в ПО BioSmart Studio v5

Организация связи ПО BioSmart Studio v5 с контроллерами осуществляется путем поиска и добавления контроллеров в сети через раздел «Устройства» (рисунок 2.

Рисунок 2. Раздел «Устройства»

ПО BioSmart Studio v5 позволяет производить поиск подключенных устройств в автоматическом режиме. Для осуществления поиска необходимо нажать кнопку «**Автопоиск**» в разделе «**Устройства**». Все подключенные контроллеры отобразятся в окне результатов поиска. Вид окна приведен на рисунке 3. Организация связи с контроллером в ПО BioSmart Studio v5 13

ение		Поиск устройств завершен	1		
	Снять/выбрать всех Фильтр по серийному номеру,	названию или адресу контрол	лера		
	Название	Тип	С/н	Подключение	
	🔲 👢 BioSmart 4 S/N 4009	BioSmart 4	4009	172.29.21.251:20002	
	🔲 👢 BioSmart 4 S/N 7322	BioSmart 4	7322	172.29.21.159:20002	
	🔲 👢 BioSmart 4 S/N 9121	BioSmart 4	9121	172.29.21.71:20002	
	🔲 🚦 BioSmart 5M S/N 30037	BioSmart 5M	30037	172.29.21.117:20002	
	🔲 🚦 BioSmart 5M S/N 31078	BioSmart 5M	31078	172.29.21.72:20002	
	🔲 🌑 BioSmart BioScan S/N 151567	BioSmart BioScan	151567	172.29.21.20:20002	
	🔲 🌑 BioSmart BioScan S/N 172005	BioSmart BioScan	172005	172.29.21.17:20002	
	🔲 🔯 Biosmart Identification Server S/N 120000	Identification Server	120000	172.29.21.60:20002	
	🔲 🌉 Biosmart Palm Vein WTC 2 S/N 1234	Biosmart Palm Vein WTC 2	1234	172.29.21.144:20002	
	🔲 🌉 Biosmart Palm Vein WTC 2 S/N 220127	Biosmart Palm Vein WTC 2	220127	172.29.21.184:20002	
	🔲 🌉 Biosmart Palm Vein WTC 2 S/N 220973	Biosmart Palm Vein WTC 2	220973	172.29.21.95:20002	
	🔲 🌉 Biosmart Palm Vein WTC 2 S/N 222894	Biosmart Palm Vein WTC 2	222894	172.29.21.86:20002	
	🔲 🌉 Biosmart Palm Vein WTC 2 S/N 222907	Biosmart Palm Vein WTC 2	222907	172.29.21.103:20002	
	🔲 🌆 Biosmart Palm Vein WTC 2 S/N 239900	Biosmart Palm Vein WTC 2	239900	172.29.21.94:20002	

Рисунок 3. Окно с результатами поиска устройств

В окне отображаются все подключенные к сети контроллеры, их IP-адреса, и серийные номера. Для того чтобы установить связь с выбранным контроллером необходимо отметить его в списке и нажать кнопку «Подтвердить». После этого контроллер отобразится в списке доступных устройств в разделе «Устройства» (рисунок 4).

Название	Адрес	Н	П	Ш	С
🖌 👢 Контроллеры					
BioSmart 4 S/N 8804	172.29.21.19:20002		<u> </u>		•

Рисунок 4. Отображение правильно подключенного контроллера

Если связь не была установлена, значок контроллера будет подсвечиваться красным цветом, а в поле «Состояние соединения» (С) будет выведен символ

Добавить в дерево устройств контроллеры можно также вручную:

- 1) Нажать кнопку «Добавить» в пункте «Контроллеры»;
- 2) Выбрать из списка соответствующий тип контроллера;
- 3) Ввести IP-адрес контроллера в поле «IP-адрес» (рисунок 5) или DNSимя контроллера в поле «Имя хоста»;
- 4) Ввести название контроллера в поле «Название» (рисунок 5);
- 5) Поле «Серийный номер» заполнять не обязательно. Серийный номер контроллера будет считан автоматически.

abbanne	BioSmart 4	
Серийный ном	ep 0	
Интерфейс г	юдключения	*
Имя хоста		
IP-адрес	172.25.110.71	
Beer	20002	*
nopi		

Рисунок 5. Добавление контроллера вручную.

Внимание! Сетевые настройки ПК должны обеспечивать попадание IP-адреса контроллера в одну подсеть с ПК. Следует убедиться, что в данной подсети отсутствуют устройства с совпадающими IP-адресами.

Для удаления контроллера необходимо выбрать его в списке устройств и нажать кнопку «**Удалить**».

Дополнительная информация о добавлении и удалении контроллеров в ПО BioSmart Studio v5 приведена в Руководстве администратора ПО Biosmart Studio v5.

6. Конфигурация контроллера в ПО Biosmart Studio v5

Для вызова окна конфигурации контроллера необходимо выбрать контроллер в списке доступных устройств и нажать кнопку «**Свойства**». Вид окна свойств контроллера приведен на рисунке 6.

3 () 🖶 🏟	1							
Общие	Системные	Настройки IO	Диагно	стика	Видеокамеры				
	Пар	аметр					Значение		
Контро	ллер								
Назі	вание			BioSma	art 4 S/N 8804				
Cep	ийный номер			8804					
Под	ключаться авто	оматически		V					
Про	шивка			BIOSM	ART4 V2.5f				
Подклн	очение								
Имя	ахоста								
IP-a,	дрес			172.29.	21.11				
Пор	т			20002					_
Mac	ка подсети			255.255	5.0.0				=
Шлн	03			172.29.	21.254				
MAG	С-адрес			00:08:3	1:00:10:03				
Режим	работы								_
Реж	им работы			Автонс	омный режим				
Сер	вер идентифик	ации		Не наз	начен				
дополн	ительно			Durati- /	(F	ITC - 05-00)			
Reco		18413		Russia/	скатериноург (U	/ic+05:00)			_
Бреі	мя ожидания о	ibeid	MTID	1000					
Kon	ичество польза	эмер пакета, одит звателей	(WITO)	2					
Kon	ичество шабло	нов		2					
Кол	-во журналов в	памяти		425					-
NO/I	so wyphanob b			.23					

Рисунок 6. Окно конфигурации свойств контроллера.

Регулируемые параметры (свойства) сгруппированы по функциональному назначению и распределены по вкладкам «Общие», «Системные». «Настройки IO», «Диагностика» и «Видеокамеры».

6.1. Вкладка «Общие»

Вкладка содержит разделы «Контроллер», «Подключение», «Режим рабо-

ты», «Дополнительно».

6.1.1. Раздел «Контроллер»

Раздел представляет общую информацию о контроллере. Содержит следующие пункты:

- Название Название контроллера;
- Серийный номер Серийный номер контроллера (не изменяется);
- Подключаться автоматически Определяет, будет ли контроллер автоматически подключаться к BioSmart Studio v5 при обнаружении соединения;
- Прошивка Версия прошивки контроллера.

6.1.2. Раздел «Подключение»

В данном разделе регулируются параметры, отвечающие за соединение контроллера с ПК. Раздел содержит следующие пункты:

- Имя хоста DNS-имя контроллера;
- IP-адрес IP-адрес контроллера;
- Порт Используемый порт;
- Маска подсети Маска подсети;
- Шлюз Адрес шлюза;
- MAC-адрес MAC-адрес.

6.1.3. Раздел «Режим работы»

В данном разделе устанавливается режим работы контроллера. Раздел содержит следующие пункты:

• Режим работы:

В режиме «Автономный» шаблоны отпечатков заносятся в контроллере.

В режиме «**Серверный**» шаблоны отпечатков заносятся только в базу сервера идентификации. Идентификация происходит на сервере. При включении этого параметра идентификация сотрудника по отпечатку будет производиться не на самом устройстве, а на сервере, что увеличивает число сотрудников, с которыми может работать СКУД и скорость идентификации. • Сервер идентификации - IP-адрес сервера идентификации.

6.1.4. Раздел «Дополнительно»

Раздел содержит следующие пункты:

- Часовой пояс Указание часового пояса, в котором находится контроллер;
- Время ожидания ответа Задает время ожидания ответа от устройства сервером Biosmart, в мс., по истечении которого будет зафиксирована ошибка связи с устройством;
- Максимальный размер пакета, байт (MTU) Задает максимальный размер пакета, отправляемый контроллером на сервер;
- Количество пользователей Отображает текущее количество пользователей, которым назначен доступ на контроллер;
- Количество шаблонов Отображает текущее количество шаблонов, хранящихся в памяти контроллера;
- Количество журналов в памяти Отображает текущее количество журналов, хранящихся в памяти контроллера.

6.2. Вкладка «Системные»

Вкладка содержит разделы «Общие», «Доп. устройства», «Реле», «Параметры управления доступом».

6.2.1. Раздел «Общие»

- Направление прохода:
 - «**Не назначено**» события доступа через контроллер будут формироваться без указания направления прохода;
 - «Вход» события доступа через контроллер будут формироваться с указанием направления «Вход»;
 - «Выход» события доступа через контроллер будут формироваться с указанием направления «Выход».

- Тип идентификатора:
 - Отпечаток или карта событие «Идентификация успешна» будет происходить по отпечатку или по карте;
 - Карта + Отпечаток событие «Идентификация успешна» будет происходить, если будут опознаны сначала карта, а потом, в течение 10сек. отпечаток пользователя;
 - Код + Отпечаток событие «Идентификация успешна» будет происходить, если будет опознан сначала код, набранный на кодонаборной панели с Wiegand выходом, потом отпечаток пользователя;
 - Отпечаток на карте событие «Идентификация успешна» будет происходить по положительному результату сравнения шаблона отпечатка, записанного на карту и, непосредственно, отпечатка пользователя, приложенного в течение 10 сек, после распознавания отпечатка с карты, к сканеру контроллера;
- Тип сканера Отображение типа сканера, примененного в данном контроллере;
- Точность распознавания задает вероятность ложной идентификации по отпечатку. Рекомендуемое значение 1/100000;
- Допустимый угол поворота пальца задает максимальный допустимый угол поворота отпечатка от оси сканера в градусах. Рекомендуемое значение – 30°;
- Скорость распознавания определяет выбор алгоритма распознавания отпечатков. Чем быстрее работает алгоритм, тем больше вероятность ошибочного отказа доступа (FAR), но при этом значительно снижается скорость обработки в большой базе данных. Рекомендуемое значение – Auto. В этом режиме скорость выставляется автоматически, в зависимости от числа шаблонов отпечатков в базе контроллера;
- Чувствительность сенсора определяет, насколько качественным должен быть отпечаток, для того, чтобы произошел захват его изображения контроллером. Увеличение чувствительности сенсора ведет к возможности захвата изображений менее качественных отпечатков, но увеличивает вероятность ошибочного отказа доступа (FRR) и повышает возможность захвата оставшегося на оптическом считывателе изобра-

жения отпечатка под влиянием прямого света;

- Количество попыток взлома количество неудачных попыток идентификации по любому идентификатору. При превышении числа попыток, работа контроллера блокируется на время «Таймер блокировки при взломе»;
- Таймер блокировки при взломе задает время блокировки контроллера;
- Контроль вскрытия корпуса устанавливает, будет ли при вскрытии корпуса генерироваться событие «Вскрыт корпус» и издаваться заданные в настройках IO контроллера сигналы;
- Встроенный считыватель карт позволяет включить или отключить встроенный считыватель карт;
- Подтверждение идентификации из мониторинга позволяет включить или отключить подтверждение идентификации из раздела «Мониторинг».

6.2.2. Раздел «Доп. устройства»

- Доп. оборудование определяет тип устройства подключенного к порту связи №2 контроллера (контакты 1,2 платы клеммника);
 - **Не используется** устанавливается, если к порту связи не подключены никакие устройства;
 - **БУР Biosmart** к контроллеру подключен БУР;
 - СК-24 к контроллеру подключено устройство выдачи ключей;
 - Кронверк контроллер работает в режиме интеграции со СКУД «Кронверк» под управлением ПО «Кронверк»;
 - **Biosmart BOX** к контроллеру подключено устройство контроля ячеек Biosmart BOX;
 - **Perco** контроллер работает в режиме интеграции со СКУД «Perco» под управлением ПО «Perco».
- Режим Wiegand выхода задает тип протокола выходного интерфейса
 Wiegand контроллера:
 - Не используется к выходу Wiegand контроллера не подключен

контроллер сторонней СКУД.

- **Wiegand-26 (W/P)** к выходу Wiegand контроллера подключен контроллер сторонней СКУД, использующий протокол Wiegand 26.
- **Wiegand-32** к выходу Wiegand контроллера подключен контроллер сторонней СКУД, использующий протокол Wiegand 32.
- Тип данных Wiegand определяет выбор типа данных, передаваемых по Weigand:
 - UID (ID пользователя) Card/UID (Код карты или ID);
 - Длительность импульса длительность импульса, передаваемого по
 Wiegand. Рекомендуемое значение 200 мс;
 - **Период следования импульсов** период следования импульсов, передаваемых по Wiegand. Рекомендуемое значение 2000 мс;
- Режим Wiegand входа задает тип протокола входного интерфейса Wiegand контроллера:
 - Не используется к входу Wiegand контроллера не подключен считыватель;
 - Wiegand-26 (W/P) к входу Wiegand контроллера подключен считыватель, использующий протокол Wiegand 26 с битами проверки четности;
 - **Wiegand-26** к входу Wiegand контроллера подключен считыватель, использующий протокол Wiegand 26;
 - **Wiegand-32** к входу Wiegand контроллера подключен считыватель, использующий протокол Wiegand 32.
- Режим bypass при включении этого режима доступна передача ID proximity-карты, не зарегистрированной в базе ПО Biosmart Studio v5, на контроллер сторонней СКУД через Wiegand-выход контроллера;
- **Таймер bypass** задает время, по истечении которого номер карты будет передан на Wiegand выход контроллера.

6.2.3. Раздел «Реле»

• Выходное реле - выбор типа реле, срабатывающего по нажатию кнопки управления (замыкание контакта – передний фронт положительного уровня);

- **Реле бортовое** по нажатию кнопки срабатывает бортовое оптореле контроллера;
- **Реле №1 БУР** по нажатию кнопки срабатывает реле №1 блока управления реле (БУР);
- **Реле №2 БУР** по нажатию кнопки срабатывает реле №2 блока управления реле (БУР);
- Таймер выходного реле время, в течение которого, реле находится в активном состоянии;
- Режим триггера реле в режиме триггера меняет свое состояние при каждом событии «Идентификация успешна». При включении питания контроллера после его аварийного отключения, реле возвращается в состояние, в котором оно находилось при выключении питания;
- Режим блокировки из мониторинга определяет управление реле из раздела «Мониторинг» Biosmart Studio v5 :
 - **Ручной** в режиме «**Мониторинг**», при нажатии кнопки «**Открыть**» выход реле включается, выключается по команде «**Закрыть**»;
 - По таймеру при включении кнопки «Открыть» выход реле включается, выключается по таймеру. Время включения устанавливается в поле «Таймер»;

6.2.4. Параметры управления доступом

- Реле выбор типа реле, срабатывающего по событию «Идентификация успешна» и настройка режима его работы.
 - **Реле бортовое** по событию «**Идентификация успешна**» срабатывает бортовое оптореле контроллера;
 - Реле №1 БУР по событию «Идентификация успешна» срабатывает реле №1 БУР;
 - Реле №2 БУР по событию «Идентификация успешна» срабатывает реле №2 БУР.
- Вход выбор входа, к которому будет подключена кнопка управления реле:
 - Нет кнопка управления не подключена ни к одному из входов;

- **Вход бортовой** кнопка управления подключена к бортовому дискретному входу контроллера (контакты 13,14 платы клеммника);
- **Вход БУР №1,2,3,4** кнопка управления подключена к дискретному входу БУР №1,2,3,4, соответственно;
- Таймер кнопки реле определяет время срабатывания реле при нажатии кнопки выхода (мс.);
- Датчик прохода определяет, к какому входу подключен датчик прохода:
 - Нет датчик прохода не подключен ни к одному из входов;
 - **Вход бортовой** датчик прохода подключен к бортовому дискретному входу контроллера (контакты 13,14);
 - **Вход БУР №1,2,3,4** датчик прохода подключен к дискретному входу БУР №1,2,3,4, соответственно.
- Активное состояние устанавливает активное состояние реле (высокое или низкое);
- Режим разблокировки выходного реле устанавливает режим разблокировки выходного реле;
 - **По открыванию двери** реле отключается по переднему фронту сигнала срабатывания датчика прохода;
 - **По закрыванию двери** реле отключается по заднему фронту сигнала срабатывания датчика прохода.
- Учет рабочего времени по датчику определяет, будет ли учитываться факт получения сигнала с датчика прохода после события «Идентификация успешна» на контроллере для фиксации действительного прохода сотрудника через зону действия датчика прохода. В случае успешной идентификации пользователя и получении сигнала с датчика прохода, событие «Идентификация успешна» фиксируется в системе учета рабочего времени ПО Biosmart Studio v5. При отсутствии сигнала с датчика прохода фиксируется событие «Факта прохода не было», при этом факт идентификации сотрудника не учитывается в системе учета рабочего времени ПО Biosmart Studio v5.
- **Генерация события «Взлом двери»** определяет, будет ли генерироваться событие «**Взлом двери**» в случае срабатывания датчика прохода

без предоставления доступа;

- Таймер ожидания прохода устанавливает время, в течение которого контроллер ожидает срабатывания датчика прохода после предоставления доступа;
- Вход датчика пожарной тревоги определяет вход датчика пожарной тревоги.

- **Нет** – датчик пожарной тревоги не подключен ни к одному из входов.

- **Вход бортовой** датчик пожарной тревоги подключен к бортовому дискретному входу контроллера (контакты 13,14);
- **Вход БУР №1,2,3,4** датчик пожарной тревоги подключен к дискретному входу БУР №1,2,3,4, соответственно;

6.3. Вкладка «Настройки IO»

- Старт системы устанавливает режим индикации и выходных сигналов при старте контроллера:
 - Красный/зеленый/синий св. включает красный/зеленый/синий светодиод (время, мс — время включения, количество — количество включений);
 - **Звуковой сигнал** включает звуковой сигнал (время, мс время включения, количество количество включений);
 - **Реле бортовое/1 БУР/2БУР** включает реле контроллера/БУР (время, мс – время включения, количество – количество включений).
- Идентификация успешна устанавливает режим индикации и выходных сигналов при успешной идентификации на контроллере:
 - Красный/зеленый/синий св. включает красный/зеленый/синий светодиод (время, мс – время включения, количество – количество включений);
 - **Звуковой сигнал** включает звуковой сигнал (время, мс время включения, количество количество включений);
 - **Реле бортовое/1 БУР/2БУР** включает реле контроллера/БУР (время, мс – время включения, количество – количество включений).

- Идентификация неуспешна устанавливает режим индикации и выходных сигналов при неуспешной идентификации на контроллере:
 - Красный/зеленый/синий св. включает красный/зеленый/синий светодиод (время, мс – время включения, количество – количество включений);
 - Звуковой сигнал включает звуковой сигнал (время, мс время включения, количество количество включений);
 - **Реле бортовое/1 БУР/2БУР** включает реле контроллера/БУР (время, мс – время включения, количество – количество включений).
- Ожидание отпечатка устанавливает режим индикации и выходных сигналов на контроллере в режиме ожидания отпечатка:
 - Красный/зеленый/синий св. включает красный/зеленый/синий светодиод (время, мс – время включения, количество – количество включений);
 - **Звуковой сигнал** включает звуковой сигнал (время, мс время включения, количество количество включений);
 - **Реле бортовое/1 БУР/2БУР** включает реле контроллера/БУР (время, мс – время включения, количество – количество включений).
- **Ожидание Wiegand** устанавливает режим индикации и выходных сигналов контроллера, находящегося в режиме ожидания приема/передачи данных по интерфейсу Wiegand.
 - Красный/зеленый/синий св. включает красный/зеленый/синий светодиод (время, мс – время включения, количество – количество включений);
 - Звуковой сигнал включает звуковой сигнал (время, мс время включения, количество количество включений);
 - **Реле бортовое/1 БУР/2БУР** включает реле контроллера/БУР (время, мс – время включения, количество – количество включений).
- Блокировка пользователя устанавливает режим индикации и выходных сигналов при попытке заблокированного пользователя пройти идентификацию на контроллере
 - Красный/зеленый/синий св. включает красный/зеленый/синий

светодиод (время, мс – время включения, количество – количество включений);

- Звуковой сигнал включает звуковой сигнал (время, мс время включения, количество количество включений);
- Реле бортовое/1 БУР/2БУР включает реле контроллера/БУР (время, мс – время включения, количество – количество включений).
- Поиск отпечатков устанавливает режим индикации и выходных сигналов при поиске соответствия отпечатков в базе контроллера приложенным отпечатком. Устанавливается для режима «Отпечаток или карта»:
 - Красный/зеленый/синий св. включает красный/зеленый/синий светодиод (время, мс – время включения, количество – количество включений);
 - **Звуковой сигнал** включает звуковой сигнал (время, мс время включения, количество количество включений);
 - **Реле бортовое/1 БУР/2БУР** включает реле контроллера/БУР (время, мс – время включения, количество – количество включений).
- Верификация отпечатков устанавливает режим индикации и выходных сигналов при поиске соответствия отпечатков в базе контроллера в режиме двухфакторной идентификации (например карта+отпечаток):
 - Красный/зеленый/синий св. включает красный/зеленый/синий светодиод (время, мс – время включения, количество – количество включений);
 - **Звуковой сигнал** включает звуковой сигнал (время, мс время включения, количество количество включений);
 - **Реле бортовое/1 БУР/2БУР** включает реле контроллера/БУР (время, мс – время включения, количество – количество включений).
- Блокировка пользователя (расписание) устанавливает режим индикации и выходных сигналов при попытке пользователя, заблокированного по расписанию, пройти идентификацию на контроллере:
 - Красный/зеленый/синий св. включает красный/зеленый/синий светодиод (время, мс время включения, количество количество

включений);

- Звуковой сигнал включает звуковой сигнал (время, мс время включения, количество количество включений);
- **Реле бортовое/1 БУР/2БУР** включает реле контроллера/БУР (время, мс – время включения, количество – количество включений).
- Блокировка пользователя (праздник) устанавливает режим индикации и выходных сигналов при попытке пользователя, заблокированного по расписанию праздничного дня, пройти идентификацию на контроллере:
 - Красный/зеленый/синий св. включает красный/зеленый/синий светодиод (время, мс – время включения, количество – количество включений);
 - Звуковой сигнал включает звуковой сигнал (время, мс время включения, количество количество включений);
 - **Реле бортовое/1 БУР/2БУР** включает реле контроллера/БУР (время, мс – время включения, количество – количество включений).
- Взлом корпуса устанавливает режим индикации и выходных сигналов при взломе корпуса:
 - Красный/зеленый/синий св. включает красный/зеленый/синий светодиод (время, мс – время включения, количество – количество включений);
 - Звуковой сигнал включает звуковой сигнал (время, мс время включения, количество количество включений);
 - **Реле бортовое/1 БУР/2БУР** включает реле контроллера/БУР (время, мс – время включения, количество – количество включений).
- Свободный проход устанавливает режим индикации и выходных сигналов контроллера, находящегося в режиме свободного прохода:
 - Красный/зеленый/синий св. включает красный/зеленый/синий светодиод (время, мс – время включения, количество – количество включений);
 - Звуковой сигнал включает звуковой сигнал (время, мс время включения, количество количество включений);

- Реле бортовое/1 БУР/2БУР включает реле контроллера/БУР (время, мс – время включения, количество – количество включений).
- Anti-passback устанавливает режим индикации и выходных сигналов контроллера при запрете повторного прохода в одном направлении. Данный режим индикации доступен в серверном режиме идентификации, при включении режима anti-passback:
 - Красный/зеленый/синий св. включает красный/зеленый/синий светодиод (время, мс – время включения, количество – количество включений);
 - Звуковой сигнал включает звуковой сигнал (время, мс время включения, количество количество включений);
 - **Реле бортовое/1 БУР/2БУР** включает реле контроллера/БУР (время, мс – время включения, количество – количество включений).
- Взлом двери устанавливает режим индикации и выходных сигналов при генерации события «Взлом двери» на контроллере:
 - Красный/зеленый/синий св. включает красный/зеленый/синий светодиод (время, мс – время включения, количество – количество включений);
 - Звуковой сигнал включает звуковой сигнал (время, мс время включения, количество количество включений);
 - **Реле бортовое/1 БУР/2БУР** включает реле контроллера/БУР (время, мс – время включения, количество – количество включений).

6.4. Вкладка «Диагностика»

В данной вкладке отображается диагностическая информация о контроллере.

6.4.1. Раздел «Статистика ошибок»

- Передано количество команд, переданных сервером контроллеру;
- Кол-во повторов количество повторных попыток передачи данных из контроллера;
- Кол-во ошибок передачи количество ошибок передачи данных из

Контроллер BioSmart 4-О. Руководство по эксплуатации v.2.3

контроллера

• Кол-во сбоев - количество сбоев в работе контроллера.

6.5. Вкладка «Видеокамеры»

Отображает информацию о видеокамерах, подключенных через сервер ITV. Подробнее о работе с сервером ITV см. Руководство администратора Biosmart Studio v5.

Руководство можно скачать на официальном сайте производителя (<u>www.bio-</u> <u>smart.ru</u>) в разделе «Поддержка».

6.6. Организация доступа на контроллер

Организация доступа на контроллер для пользователей осуществляется посредством ПО Biosmart Studio v5.

Для организации доступа на контроллер в ПО **BioSmart Studio v5** необходимо перейти в раздел «Группы доступа» и в панели «**Объекты доступа**» указать требуемый контроллер, после этого нажать кнопку «**Сохранить**» (рис. 7).

Подробные сведения о добавлении пользователей в группы доступа и назначении групп доступа на объекты доступа приведены в Руководстве пользователя Biosmart Studio v5.

Руководство можно скачать на официальном сайте производителя (<u>www.bio-</u> <u>smart.ru</u>) в разделе «Поддержка».

Рисунок 7 – Назначение доступа на контроллер

7. Правила сканирования отпечатков пальцев на контроллере

Для предотвращения ошибок при сканировании и обеспечения надлежащего качества сохраняемого отпечатка, при сканировании необходимо соблюдать следующие правила:

• Прикладывать палец к сканеру необходимо в течение промежутка времени, заданного ПО BioSmart Studio v5. О начале и окончании промежутка контроллер сигнализирует звуковым сигналом.

• Палец следует держать прямо, не сгибая.

- Кончик пальца должен касаться тактильных точек, расположенных на пластиковой поверхности у края сканера.
- Подушечка пальца должна прикоснуться к поверхности полностью.
- Палец должен быть чистым, нормальной влажности и температуры

Правильное расположение пальца приведено на рисунке 8.

Рисунок 8. Правильное расположение пальца при сканировании

8. Техническое обслуживание

Техническое обслуживание контроллера проводится с периодичностью один раз в квартал.

Техническое обслуживание устройства заключается в систематическом наблюдении за правильностью его работы, регулярном техническом осмотре и устранении неисправностей.

В техническое обслуживание входит:

- Удаление грязи и пыли со сканера отпечатков пальцев. Выполняется мягкой сухой тканью без применения химических средств;
- Проверка креплений соединений, разъемов;
- Проверка индикации режимов работы прибора;
- Проверка журнала аварийных событий в ПО BioSmart Studio v5.

9. Хранение

Хранение контроллера в потребительской таре должно соответствовать условиям хранения 1 по ГОСТ 15150-69.

В помещениях для хранения контроллера не должно быть паров кислот, щелочей, агрессивных газов и других вредных примесей, вызывающих коррозию.

10. Транспортирование

Транспортирование упакованных контроллеров должно производиться любым видом транспорта в крытых транспортных средствах, в соответствии с требованиями ГОСТ 23216-78.

Условия транспортирования контроллера должны соответствовать условиям хранения 5 по ГОСТ 15150-69.

Допускается транспортирование упакованных контроллеров без ограничения скорости и расстояния при температуре окружающей среды от минус 40 °С до плюс 50°С и влажности воздуха (без конденсации) до 98%.

При всех видах транспортирования упакованное изделие должно быть закреплено способом, исключающим перемещение и соударение, а также должно быть исключено непосредственное воздействие на груз атмосферных осадков и агрессивных сред.

При погрузочно-разгрузочных работах должно быть исключено воздействие на упакованное изделие ударных нагрузок.

11. Гарантии изготовителя

Изготовитель гарантирует исправную работу и соответствие характеристик изделия заявленным, при условии соблюдения потребителем правил его эксплуатации, монтажа, подключения, транспортировки и хранения.

Изготовитель предоставляет гарантию на контроллер на 60 месяцев со дня продажи, указанного в паспорте.

В случае отсутствия в паспорте отметки о дате продажи изделия, гарантийный срок исчисляется со дня его изготовления.

Гарантия изготовителя не распространяется на контроллеры вышедшие из строя по вине заказчика, вследствие нарушения правил эксплуатации.

12. Утилизация

Контроллер не содержит опасных для здоровья потребителей и окружающей среды материалов. При утилизации по окончании срока службы специальных мер по экологической безопасности не требуется.