PW Config

Обзор функциональных возможностей софта на примере программирования считывателя PW-mini MF BLE

Скачайте и установите мобильное приложение «PW Config»

С его помощью выполняется полная настройка считывателя.

СКАЧАТЬ **PW CONFIG**

Поддерживаются vстройства с Android 5.0 и выше. имеющие Bluetooth 4.0 с поддержкой BLE (Bluetooth Low Energy).

Переведите считыватель в режим программирования

Замкните выводы D0 (зеленый) и D1 (белый) между собой и подайте питание.

Внимание!!! При попытке соединения, без авторизации в окне программы будет выведено сообщение о невозможности доступа.

Запустите PW Config

Нажмите кнопку «Поиск» (рис. 1-1), начнется поиск устройств. Если Bluetooth не включен, программа выдаст запрос на его включение, нажмите «Да» (puc.1-2).

Puc.1-1

Puc.1-2

Puc.1-3

Внимание!!! Для работы BLE выше должны быть включены службы местоположения (рис.1-3).

Вычитка конфигурации

При сканировании будет выведено имя считывателя, выбираем считыватель и нажимаем кнопку «Подключить» (*puc.2*). Будет выполнена вычитка конфигурации (*puc.3*).

После успешной вычитки будет доступно основное меню, в котором можно настроить считыватель, сохранить или восстановить его конфигурацию (шаблон) и обновить микропрограмму считывателя (прошивку) (*puc.4*).

Если внесены изменения в конфигурацию, становится доступен пункт меню **«Записать в устройство»** (*puc.5*). По его нажатию конфигурация будет записана в считыватель.

Для того, чтобы разъединиться со считывателем, нажмите кнопку **«Выйти».**

Внимание!!! Если разъединиться без записи конфигурации, все изменения будут утеряны.

Пункт меню «Настройки»

Здесь доступны поля групп настроек считывателя: «Устройство», «Доступ», «Индикация» и «Mobile ID».

Группа настроек «Устройство»

«Серийный номер устройства» (puc.6-1) - информационное поле, содержащее информацию о серийном номере считывателя.

«Версия микропрограммы» (*puc.6-2*) - содержит информацию о текущей версии прошивки считывателя, а также позволяет обновить прошивку считывателя.

После выбора данного пункта меню, будет отображен список доступных файлов в формате *.bin. Выберите один из них – начнется процесс обновления микропрограммы.

Внимание!!! Все микрограммы должны размещаться в папке "Загрузки" (Download) в основной памяти мобильного устройства.

«Код инженера» (*puc.6-3*) - смена кода инженера для доступа в считыватель.

При установке кода инженера пропадет необходимость замыкать выводы D0 (зеленый) и D1 (белый), что позволяет настраивать считыватели ProxWay с помощью мобильного телефона, используя технологию BLE. Это наиболее быстрый и удобный способ изменения конфигурации считывателя без его демонтажа.

Puc.6-1

Puc.6-3

Группа настроек «Доступ»

«Считыватель» (*puc.7-1*) - выбор типа используемых идентификаторов.

Чтение только Mifare, только Bluetooth или Mifare и Bluetooth. (*puc.7-2*)

«Выходной интерфейс» (*puc.8*) - можно задать тип выходного интерфейса для связи с контроллером.

Puc.7-1

Puc.7-2

Puc.8

«Шифровать Mobile ID (BLE)» (*puc.9*) - можно задать пароль шифрования мобильных идентификаторов: до 8 шестнадцатеричных символов.

Алгоритм шифрования канала передачи данных соответствует ГОСТ 28147-89, согласно которому максимальная длина криптографического ключа составляет 256 бит. (Это означает, что идентификаторы защищены от копирования по воздуху, создания клона и взлома).

Группа настроек «Mifare Classic»

«Mifare Classic» - при использовании карт доступа типа Mifare Classic, содержит в себе ряд настроек безопасности.

Технология Mifare используется, как правило, в сложных системах, где вопросы конфиденциальности и защиты данных имеют большое значение.

Именно для обеспечения защиты и безопасности в технологии MIFARE реализована обработка данных с использованием ключей и криптографических алгоритмов.

Считыватели, используемые для записи и чтения данных в чип Mifare, должны также поддерживать защиту и безопасность данных со своей стороны. Это означает, что считыватель должен также хранить в своей памяти ключи доступа для каждого сектора Mifare Classic.

Если считыватель не обладает такой возможностью, то такой считыватель не следует использовать, так как защищенность всей системы в целом будет на низком уровне.

Если шифровать карты не требуется:

«Безопасность» → «Нет» (*puc.10-1, 10-2*). В этом случае будет передаваться в контроллер только UID и информация завода-изготовителя чипа.

В этом режиме дополнительно можно настроить:

«Порядок байт кода карточки» → «Прямой» или «Обратный» (*puc.11*). Данная функция предусмотрена для интеграции в различные системы СКУД в которых может требоваться такая инверсия.

• • ± @ & *	tf∥ 51% 🖹 15:33	■ = ± @ & * "	afi 51% 🖹 15:33	■ 🖬 ± @ %	\$ 19€ 50% 🖹 15:44
Mifare Classic		Mifare Classic		Mifare Plus	
Безопасность Нет	>	Безопасность Нет	>	Безопасность	>
Ключ	5			Жлідч	
Безопасность				читать секторы	
 Нет Классии 6 бойт. 				Порядок байт кода к	арточки
О Диверсификаци	я			🔘 Обратный	
Порядок байт кода кар	точки	Порядок байт кода карточ	іки >	Порядок байт кода кар	точки >

Если карты Mifare Classic будут зашифрованы

Требуется чтение данных из защищенного блока Mifare. Для этого в поле «Безопасность» есть два варианта – «Классик 6 байт» и «Диверсификация»

«Безопасность» → «Классик 6 байт» (*puc.12-1, 12-2*). Режим шифрования SL1 (CRYPTO-1).

■ 🖬 ± 🗞 🛛 🖇 🛱 🖬	48% 🖬 15:59	■ 🖬 ± @ % 🕺 👫 .:il 51%	15:34
Mifare Classic		Mifare Classic	
Безопасность Классик 6 байт	>	Безопасность Классик 6 байт	>
Ключ Да	>	Ключ Да	>
Безопасность	٦.	Читать секторы 1-15	>
 Нет Классик 6 байт 		Читать Код карточки	>
О Диверсификация			
Порядок байт кода карточк Прямой	и >	Порядок байт кода карточки	>
Puc 12-1		Puc 12-2	

«Ключ» - в этом поле можно задать ключ шифрования для идентификаторов Mifare: 12 шестнадцатеричных символов (*puc.13-1, 13-2*).

При инициализации чипа Mifare Classic заказчик (владелец объекта) **должен сам сгенерировать значения ключей** и надежно хранить эту информации. Это организационный момент, значение которого нельзя недооценивать.

пасн ик 6 ба	о сть йт				>	Б	езопасн пасеик 6 б	ность айг			
люч					T	K	Ключ				
								1234	56AB	CDEF	
A)	B	1	2	3		1	A	B	1	2	3
c	D	4	5	6		ĸ	C	D	4	5	6
E	F	7	8	9		-	E	F	7	8	9
		X	0	<					X	0	<
	0	гмена				F		0	TMEHA	ПРИМ	ИЕНИ
					а.						

Puc.13-1

Puc.13-2

«Читать секторы» (*puc.14*). В этом поле можно задать значения секторов, которые нам необходимо читать.

Каждый сектор Mifare Classic может иметь свои собственные ключи доступа и условия записи / чтения данных.

«Читать» → «Код карточки» (*puc.15*). Если ключ шифрования записанной ячейки в карте совпадает с ключом шифрования в считывателе, то на выходе в контроллер будет передаваться код карты (UID).

«Читать» → «По адресу» (рис.16). Выбирая этот пункт, мы получаем на выходе со считывателя информацию, записанную в определенный блок памяти карты.

Puc.14

Puc.15

Puc.16

После выбора пункта меню «По адресу» становится доступной команда «Читать по адресу». Здесь мы можем указать смещения в битах для чтения в блоках (puc.17).

«Порядок байт кода карточки» → «Прямой» или «Обратный» (puc.18).

Данная функция предусмотрена для интеграции в различные системы СКУД в которых может требоваться такая инверсия.

Puc.17

«Безопасность» → «Диверсификация» (рис.19-1, 19-2). Более защищенный прикладной алгоритм шифрования «Диверсифицированные ключи» на любом, выбранном уровне шифрования (SL1, SL3). Принцип алгоритма заключается в том, что каждый идентификатор имеет свой индивидуальный ключ шифрования.

∎⊒±%	¥ t‼ "⊯ 48% 🖬 15:59	■⊒±@% ¥ t°.al 51%	â 15:36
		Mifare Classic	
Безопасность Диверсификация	>	Безопасность Диверсификация	>
Ключ Да	>	Ключ Да	>
Безопасность		Читать секторы 1-15	>
с О Нет		Читать Код карточки	>
 Диверсифика: 	ция		
Порядок байт кода ка	рточки >	Порядок байт кода карточки	>

«Ключ» - B этом поле можно задать ключ шифрования для идентификаторов Mifare Classic режиме диверсифицированных в ключей: 16 шестнадцатеричных символов (8 байт) (puc.20).

При инициализации чипа Mifare Classic заказчик (владелец объекта) **должен сам сгенерировать значения ключей** и надежно хранить эту информации. Это организационный момент, значение которого нельзя недооценивать.

Puc.20

«Читать секторы» (*puc.21*). В этом поле можно задать значения секторов, которые нам необходимо читать.

Каждый сектор Mifare Classic может иметь свои собственные ключи доступа и условия записи / чтения данных.

«Читать» → «Код карточки» (*puc.22*). Если ключ шифрования записанной ячейки в карте совпадает с ключом шифрования в считывателе, то на выходе в контроллер будет передаваться код карты (UID).

«Читать» → «По адресу» (рис.23). Выбирая этот пункт, мы получаем на выходе со считывателя информацию, записанную в определенный блок памяти карты.

Puc.23

После выбора пункта меню «По адресу» становится доступной команда «Читать по адресу». Здесь мы можем указать смещения в битах для чтения в блоках (рис. 24).

«Порядок байт кода карточки» → «Прямой» или «Обратный» (puc.25).

Данная функция предусмотрена для интеграции в различные системы СКУД в которых может требоваться такая инверсия.

Puc.24

Puc.25

Группа настроек «Mifare Plus»

«Mifare Plus» - при использовании карт доступа типа Mifare Plus, содержит в себе ряд настроек безопасности.

Технология Mifare используется, как правило, в сложных системах, где вопросы конфиденциальности и защиты данных имеют большое значение.

В свою очередь продукты Mifare Plus призваны повысить существующий уровень безопасности при использовании бесконтактных смарт-карт карт.

Mifare Plus обеспечивает полную совместимость снизу-вверх с продуктами Mifare Classic 1K и Mifare Classic 4K.

Карты Mifare Plus могут легко интегрироваться в существующие системы, где уже используются карты Mifare Classic.

Уровень защищенности карт Mifare Plus может быть повышен в любой момент по мере развития системы путем активизации алгоритма AES (Advanced Encryption Standard), обеспечивающего высокий уровень безопасности, целостности данных, аутентификации и шифрования.

Если шифровать карты не требуется:

«Безопасность» → «Нет» (*puc.26-1, 26-2*). В этом случае будет передаваться в контроллер только UID и информация завода-изготовителя чипа.

Puc. 26-1

Puc. 26-2

В этом режиме дополнительно можно настроить:

«Порядок байт кода карточки» → «Прямой» или «Обратный» (puc.27). Данная функция предусмотрена для интеграции в различные системы СКУД в которых может требоваться такая инверсия.

Puc.27

Если карты Mifare Plus будут зашифрованы

Требуется чтение данных соответствующего шифрованию режима. Для этого в поле **«Безопасность»** есть два варианта – **«Ключ SL3»** и **«Диверсификация»**

«Безопасность» → «Ключ SL3» (*puc. 28-1, 28-2*). Используется для аутентификации, обмена и шифрования данных, для работы с памятью, а также для выявления удаленных атак по радиоканалу. Используется крипто-алгоритм AES.

Puc.28-1

Puc.28-2

«Ключ» - в этом поле можно задать ключ шифрования для идентификаторов Mifare: 32 шестнадцатеричных символов. (*puc. 29-1, 29-2*)

С завода-изготовителя чипы Mifare Plus (в картах, метках, браслетах и т.п.) поступают на уровне безопасности SL-0.

Использовать в прикладной системе карты на уровне SL-0 нельзя, чип Mifare Plus должен быть проинициализирован, т.е. переведен на уровень SL-1, SL-2 или SL-3.

При инициализации чипа Mifare Plus заказчик (владелец объекта) **должен сам сгенерировать значения ключей** и надежно хранить эту информации. Это организационный момент, значение которого нельзя недооценивать.

•	1 i o &			* 5	∡ ∥ 50% ≅ 15:4	5	• • •	<u>+</u> @%			* 19	all 50% i	15:45
Mife	are Plus						Mifar	e Plus					_
EK	Ключ						E	Ключ	12	3456	78		
к					-	ſ -	ĸ						1
1							1		90.	ABCD	EF		
L							2		09	8765	43		
L									21	FEDC	BA		
K	A	B	1	2	3		K	A	B	1	2	3	
	C	D	4	5	6		L	C	D	4	5	6	
,r	E	F	7	8	9		5	E	F	7	8	9	
			X	0	<		L			X	0	<	
I.		0	гмена		иенить				0	TMEHA	прим	иениті	
h													

«Читать секторы» (puc.30)

В этом поле можно задать значения секторов, которые нам необходимо читать.

Каждый сектор Mifare Plus может иметь свои собственные ключи доступа и условия записи / чтения данных

«Читать» → «Код карточки» (*puc.31*). Если ключ шифрования записанной ячейки в карте совпадает с ключом шифрования в считывателе, то на выходе в контроллер будет передаваться код карты (UID).

«Читать» → «По адресу» Выбирая этот пункт, мы получаем на выходе со считывателя информацию, записанную в определенный блок памяти карты.

После выбора пункта меню «По адресу» становится доступной команда «Читать по адресу». Здесь мы можем указать смещения в битах для чтения в блоках (puc.32).

«Порядок байт кода карточки» → «Прямой» или «Обратный» (puc. 33).

Данная функция предусмотрена для интеграции в различные системы СКУД в которых может требоваться такая инверсия.

Puc. 31

Puc.32

Puc.33

«Безопасность» → «Диверсификация» (Mifare Plus) (*puc. 34-1, 34-2*). Более защищенный прикладной алгоритм шифрования «Диверсифицированные ключи» на любом, выбранном уровне шифрования (SL1, SL3).

Принцип алгоритма заключается в том, что каждый идентификатор имеет свой индивидуальный ключ шифрования.

■ 🖬 ± @ %	\$ 15.46 \$0% ≣ 15:46	(9) ≈ 3 ≅ %	a 16:57
		Mifare Plus	
Безопасность Диверсификация	>	Безопасность Диверсификация	>
Ключ Да	>	Ключ Да	>
Безопасность		Читать секторы 1-31	>
О Нет			
О Ключ SL3			
 Диверсифика 	ция		
Порядок байт кода ка Прямой	арточки >	Порядок байт кода карточки	>

Puc.34-1

Puc.34-2

«Ключ» - в этом поле можно задать ключ шифрования для идентификаторов Mifare Plus в режиме диверсифицированных ключей: 16 шестнадцатеричных символов (8 байт). (*puc. 35-1, 35-2*).

При инициализации чипа Mifare Plus заказчик (владелец объекта) **должен сам сгенерировать значения ключей** и надежно хранить эту информации. Это организационный момент, значение которого нельзя недооценивать.

опасность	> Безопасность	
Ключ	к Ключ	
	12345678	
	90ABCDEF	
A B 1 2	3 A B 1 2	3
C D 4 5	6 CD 4 5	6
E F 7 8	9 E F 7 8	9
X O	< r X 0	<
ОТМЕНА ПРИМ	ЕНИТЬ ОТМЕНА ПР	имени

Puc. 35-1

Puc. 35-2

«Читать секторы» (puc.36).

В этом поле можно задать значения секторов, которые нам необходимо читать.

Каждый сектор Mifare Plus может иметь свои собственные ключи доступа и условия записи / чтения данных

«Порядок байт кода карточки» → «Прямой» или «Обратный» (puc. 37).

Данная функция предусмотрена для интеграции в различные системы СКУД в которых может требоваться такая инверсия.

Puc. 36

Puc. 37

Группа настроек «Индикация»

«В режиме ожидания» (puc. 38).

- Выбираем режим (цвет) индикации в режиме ожидания.

«В режиме чтения карточки» (puc. 39).

- Выбираем индицикацию считывателя в режиме чтения карты (цвет и бипер).

«Продолжительность» (puc.40).

- выбираем продолжительность индикации считывателя.

Puc. 38

Puc.39

Puc.40

Группа настроек «Mobile ID»

«Точка прохода» (*puc.41*) - Выбираем режим, в котором будет работать считыватель по каналу BLE. Этот выбор влияет на дальность работы.

В считывателе **PW-mini MF BLE** в этом меню доступно для выбора 2 режима: «Дверь» и «Ворота|Шлагбаум»

«Точка прохода» → **«Дверь»** (*puc.42*) - По умолчанию выбран этот режим, дальность работы до 80 см. Другие настройки в данном режиме не активны.

«Точка прохода» → «Ворота | Шлагбаум» (puc.43)

 При выборе этого режима, дальность работы увеличивается до 20м. Также становятся доступными дополнительные настройки.

«Особенности» - Для выбора доступен пункт в меню «Доступ только из приложения». Активация данного пункта помогает предостеречь от ложных сработок («по включению экрана» и «по разблокировке»), т.к. расстояние считывания увеличено.

«Срабатывать на расстоянии» (*puc.44-1, 44-2*) - Ползунком в настройках мы можем регулировать расстояние, что очень удобно для точной юстировки по месту установки считывателя.

Puc. 44-1

Puc.44-2

Сохранение настроек считывателя

Важно!!! Не забудьте записать настройки в считыватель после его конфигурирования

В главном меню выбираем пункт – «Сохранить программу считывателя» (puc.45-1, 45-2)

@ 📼 🖬 @ 🔦 🛛 🕺 👫 👯 🎜 57% 💼 15:07	📼 🖬 🛓 🛛 🗞 👘 🕺 🕸 🕸 🕸 🕏 8 15:50
ProxWay Mini MF BLE	ProxWay Mini MF BLE
настройки Сохранить программу считывателя Восстансвать программу ОБНОВИТЬ ПРОГРАММУ СЧИТЫВАТЕЛЯ	Сохранение колии устройства Колия устройства сохранена в файл UPPIn0101F5 ОК СЧИТЫВАТЕЛЯ
С выйти 2.5944 Рис. 45-1	Выйти

«Восстановить программу» (puc.46) - позволяет нам восстановить все настройки которые ранее были сохранены, а также через данное меню мы можем записать эти настройки в другие считыватели, где требуется работа с точно такими же настройками, что позволяет существенно сэкономить время.

«Обновить программу считывателя» (*puc.47*) - позволяет нам обновить микропрограмму (прошивку) считывателя.

Puc. 46

Puc 47